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Abstract

The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation split-
ting and locally one-dimensional finite volume, are compared for scalar advection-diffusion
problems. Algorithms for the two schemes are developed for node-based data represen-
tation on median-dual meshes associated with unstructured triangulations in two spatial
dimensions. Four model equations are considered: linear advection, non-linear advection,
diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the
two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency
comparisons. Both the stability of compressive limiters and the amount of artificial diffusion
generated by the schemes is found to be grid-orientation dependent, with the fluctuation
splitting scheme producing less artificial diffusion than the finite volume scheme. Conver-
gence rates are compared for the combined advection-diffusion problem, with a speedup of
2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. How-
ever, accurate solutions to problems with small diffusion coefficients can be achieved on
coarser meshes using fluctuation splitting rather than finite volume, so that when comparing
convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over
finite volume.
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v Diffusion coeflicient

&n Curvilinear coordinates

T Timestep

#¢,¢"  Artificial dissipation—fluctuation splitting
P Artificial dissipation—finite volume

0] Element advective fluctuation

#¢, ¢"  Fluctuation components
% ¢"  Limited fluctuations
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Limiter function

Area of control cell

40
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Introduction

Upwind discretizations for advection equations typically introduce artificial numerical
dissipation into the solution. When combined advection-diffusion problems are considered,
this dissipation introduced in the discretization of the advection terms should be less than
the true physical diffusion. To this end the diffusive characteristics of upwind schemes are
investigated and their performance in resolving solutions to advection-diffusion problems
with small diffusion coefficients is analyzed.

Two node-based, median-dual methods for modeling convective fluxes are considered.
The first is a traditional locally one-dimensional approximate Riemann solver finite volume
(FV) scheme.! Locally one-dimensional schemes applied on multidimensional domains are
known to introduce excess dissipation when discontinuities are not aligned with the mesh.?

The second method is the NNL? fluctuation splitting (FS) scheme, also referred to in
the literature as a residual distribution scheme. FS has a more-compact stencil than FV for
second-order formulations and exhibits “zero cross-diffusion”! in a grid-aligned condition.
Both of these attributes should lead to less introduced dissipation as compared with FV.

The sensitivity of FS to grid orientation and resulting production of cross-diffusion is
investigated in the present report. The use of compressive limiter functions is also tested
with both algorithms. Local timesteps based on positivity arguments are implemented for
both first- and second-order discretizations of the implicit matrix.

Formulation of FS schemes for diffusion problems is a recent research area.*® The present
study seeks to quantify the relative merits of using a low-diffusion advection operator to
resolve advection-diffusion problems with small diffusion coefficients. Lessons learned on
these problems will guide the development of computer codes for solving compressible viscous
fluid dynamic problems. A similar approach for central difference schemes with explicit
numerical dissipation has recently been taken by Efraimsson.b

t«Zero cross diffusion” refers to the practice of adding artificial diffusion terms in the streamwise direction
only, as opposed to adding artificial dissipation in both the streamwise and cross-stream directions.



Governing Equations
The non-linear advection-diffusion equation,

w+V-F=V-(wVu) (1)

is cast as a hyperbolic conservation law, to which steady-state solutions are sought.

Finite Volume

In FV form, using the divergence theorem Eqn. 1 becomes,

Aumﬂz_ﬁgiﬁwm-mﬁ (2)

where 2 is the median dual about node 7 and I" is the boundary of 2. Using mass lumping
to the nodes, similar to an explicit finite element treatment,” the temporal evolution is
evaluated on a time-invariant mesh as,
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The discretization of the convective flux, ﬁ, is performed using Barth’s implementation!
of the upwind, locally one-dimensional, approximate Riemann solver of Roe.?
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where the artificial dissipation provides the upwinding,
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with 2 = 7zt + 7yJ. Out and in refer to states on the outside and inside of (2 at the face. A
and B are the flux Jacobians,
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and (A, B) represent their conservative linearizations at the cell face.®
Piecewise linear reconstruction from the nodal unknowns to the cell faces as,

Uface = Ujg + 1/1Vu 7 (7)

provides second-order spatial accuracy in smoothly-varying regions of the solution. Median-
dual gradients of the dependent variable, Vu, are obtained from the unweighted least squares
procedure outlined by Barth. Following Bruner and Walters,” the limiter is supplied an
argument equal to half the argument Barth uses, namely,
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where 4™"/M% ig the minimum (resp. maximum) of u; and all distance-one neighbors. The
most restrictive limiting from choosing the minimum or maximum is used.

In casting the limiter argument in this form, Bruner equates the Barth limiter with
Superbee, for a limiter argument less than or equal to one. The present authors incorrectly
identified the Barth limiting with the non-symmetric Chakravarthy and Osher!'® limiter in
Ref. 11. The Barth limiting is non-symmetric, but takes the form,

0
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for the limiter cast as Eqn. 8.

Two methods for evaluating the diffusion term are incorporated into FV. The more
compact of the two, the finite element discretization, is discussed in the following section.
The less-compact diffusion formula is obtained by discretizing the last term of Eqn. 2, in a
manner similar to Eqn. 4,
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The diffusion coefficient is averaged over the length of the face. The gradients from Eqn. 7

are not limited before averaging at the control-volume faces in Eqn. 10, as suggested by
Anderson and Bonhaus.!?

Fluctuation Splitting

The NNL FS scheme is presented as a slight re-interpretation of the work of Sidilkover and
Roe.?> The current interpretation is as a volume integral over triangular elements, without
recourse to the divergence theorem. The discretized equations, however, are identical.

Integrating Eqn. 1 over an element, where €2 is now the area of the triangular element,

/utdﬁz—/v-ﬁdQ—F/V-(z/Vu)dQ (11)
Q Q Q
For linear variation of the dependent variable over the element, the temporal evolution is,
Q
/ Ut dQ) = Q’L_I,t = g(ult + U2, + U3t) (12)
Q

where u1, us9, and uz correspond to the three nodes defining element ().
Defining local curvilinear coordinates, £ and 7, parallel to sides 12 and 23, respectively
(Fig. 1), the divergence of the convective flux can be written,
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Defining the scaled inward normal, n = —hn, where h is a mesh edge length, the divergence
(Eqn. 13) becomes,
— ]_ — —
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If F is linear or quadratic in u, then for a linear variation of u over the element,
/Qv FdQ = aAgu + BAsyu (15)
where the difference operator is defined Asju = us — u; and the advection speeds are,
a:—%(ngﬁfi—l—n%é), 8= %(n1$14~1+n1y3) (16)

A and B are now the conservative linearizations over the triangular element.'3
The advective fluctuation can be defined,

¢:—/V-FdQ (17)
Q
The fluctuation can be split,
6= 0+ (18)
where,
<l5'g = —alyu, ¢"=—-FA3u (19)

Following Sidilkover!® the fluctuation is limited to achieve a second-order scheme,

o =6+ @ = (1- 2) (20
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with,
¢§
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Upwinding is achieved through the introduction of the artificial dissipation terms,
¢* =sign(a)¢®,  ¢" =sign(f)¢” (23)

Combining Eqn. 12 with a distribution scheme for Eqn. 17 and summing over all elements,
the contributions to nodal time derivatives can be written in the form,
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or in a more compact form,
Si 3 [i(3 — (8 + (F1/F) + (4 +5i — 2)(¢" — (-1)'")] + COE  (29)

where COE stands for contributions from other elements containing these nodes.
A finite element treatment, similar to Tomaich,* is employed to obtain the diffusive
fluctuation,

Oy = /QV - (vVu) d§ (26)

Assuming piecewise-linear data and an element-averaged diffusion coefficient leads to a dif-
fusive fluctuation of zero for the triangular element. Introducing the linear nodal shape
functions 9J;, such that Zle 1¥; = 1, the elemental diffusive fluctuation can be expressed

by = Zle ¢y; = 0, where
v, = /QﬁZ-V - (7Vu) dQ (27)
Integrating by parts,
v, = éﬁiﬂvu -ndl — /QDVu - V; dQ (28)

The boundary integral in Eqn. 28 will cancel on summing contributions for interior nodes.
The remaining volume integral can be evaluated analytically,

_ _ 3
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Distributing this diffusive fluctuation to the nodes and keeping only the larger of the physical
or artificial dissipation leads to the update formula,
al ¢*
Slult — 7 -+ max (—E, d)vl) + COFE

¢ + o7 (¢¢ = ")

Sotlg, 5 + max <7, (/5,,2)+ COE

2

¢ ¢"
SgUgt — 7 + max (5, ¢U3) + COFE (30)

Boundary Conditions

Explicit Dirichlet inflow boundary conditions are employed. Advective outflow bound-
aries are treated for free convection through the boundary nodes, allowing boundary nodes
to be handled in the same manner as interior nodes. For the diffusion terms a Neumann
outflow boundary is applied with zero gradient, achieved by setting the boundary integral
in Eqn. 28 to zero.



Limiter functions

Minmod, van Albada,'® Superbee, and !¢ symmetric limiters are utilized for FV (Eqn. 7)
and FS (Eqns. 20 and 21) in the form of symmetric averaging functions related to the limiter
as,

qib(g) = M(p,q) = M(q,p) =p¢(%>

The van Albada averaging function is,

_(pg+e*)p+9q)
p2 + q2 + 262

where the small parameter € varies like €2 ~ Az?, and serves to reduce the limiting in smooth
regions.

The averaging function for the 7 limiter, of which the Minmod (v = 1) and Superbee
(v = 2) are special cases, is,

(

0 pg <0
VP vlp[<lq|
M(p,q) =19 q if |p|<|q|< v|p] (31)
p g1 <[pI< 7lq]
(74 vlgl<|p|
Timestep

Both schemes are formulated either as Gauss-Seidel time-relaxation or forward Euler
time-evolution algorithms.

The nodal updates for the discrete system can be formed as a sum of contributions from
all nodes.

uftT = Z Ccjuj = ciu; + Z Cjuj (32)
J J#i
For positivity!” each of the coefficients in Eqn. 32 must be non-negative.

Advective Timestep restriction

In the FV context the nodal update (Eqn. 32) can be rearranged into the form of Eqn. 3,

- . S; S;
ZE T ) = 2 e — 1)uy + 2 e
- (u; ;) - (ci Jui + - E :CJU’J (33)

J#i

For the upwind, edge-based algorithm considered here, each %cj will be related to a positive-
definite coefficient equal to zero for outflowing faces and related to the wavespeed for in-
flowing faces, yielding the restriction 7 > 0 on the timestep. The remaining term can be



expressed,

Si
?(ci -1)=- Z Ck (34)
k about ¢

where the ¢, coefficients are also positive-definite, either zero for inflowing faces or related
to the wavespeed for outflowing faces. Rearranging and imposing the positivity constraint,
c; > 0, yields the timestep restriction,

T
1—§ch:cizo (35)

7 .
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Si

T = (36)
Zk about % Ck
For F'S, the nodal updates are assembled from Eqn. 24 as,
Si i+ t
ST —yt) = (s — uy 37
- (ug u;) ZCJ(“J u;) (37)

J#i
In this case the c¢; coefficients are formed as contributions from the fluctuations in the

triangles to both the left and the right of mesh edge 75. The positivity restriction on 7 is
found to have a similar form as for finite volume (Eqn. 36),

S;

T < 38
B Zj;ﬁi Cj (38)
Local time-stepping based on positivity is shown to yield stable, yet non-converging, so-
lutions in some second-order cases (see Results section). Robust convergence is obtained by
using the first-order ¢’s in Eqns. 36 and 38, even for second-order-accurate spatial discretiza-
tions. This is equivalent to the common practice of using a first-order Jacobian discretization

in an time-implicit scheme.

Diffusive Timestep Restriction

Unfortunately, the finite element formulation for the diffusive terms (Eqn. 29) cannot be
guaranteed to preserve local positivity on obtuse triangles (see Barth'). Considering only
the contributions from the current node, the coefficient for the diffusion term can be written,

T vil?
ui"" = uf (1 -5 E) (39)
tor

The appropriate edge length is the side of the element opposite the current node. The
resulting timestep restriction is,

S.
re (40)
T 40
In a similar manner the timestep restriction from Eqn. 10 is,
S
T S Z 3uAT2 (41)
T 40



Results
Linear Advection

The linear advection equation is obtained from Eqn. 1 by setting v = 0 and F = Xu,
yielding,

u+ V- (Au) =0 (42)

A divergence-less advection velocity is considered, such that V- X =0. Equation 42 can then
be written,

U+ X-Vu=0 (43)
Uniform Advection

Uniform advection of the Heavyside function at —45 degrees, X = (1,—1), on a cut-
cartesian mesh is shown for first-order F'S, second-order FS, and second-order F'V in Figs. 2-4,
respectively. The mesh is shown as the dashed background, and equally-spaced contours vary
on [0,1], the minimum and maximum solution values. The spread of the contour lines with
spatial evolution is indicative of the amount of dissipation introduced into the solution by
the discretization of the convective terms.

Second-order FS is seen to be greatly superior to first-order, as expected, reproducing the
exact solution in this case with no introduced dissipation. Also, FS represents a significant
reduction in numerical diffusion versus the corresponding FV scheme, with both results
employing the Minmod limiter.

However, the “zero cross-diffusion” results of Fig. 3 with FS are misleading. In Fig. 5
the advection velocity has been rotated counter clockwise by 90 degrees on the same grid.
Clearly, the artificial dissipation introduced by the FS scheme has been increased.

The corresponding F'V solution is shown in Fig. 6. While the change in contour spreading
for the FV scheme between Figs. 4 and 6 is less dramatic than the change in spreading for
the F'S scheme in Figs. 3 and 5, the FS results still exhibit less diffusion than the FV results,
comparing Figs. 5 and 6.

Employing the compressive Superbee limiter with the F'S scheme yields the results of
Fig. 7. In this case the discontinuity is confined to a 2-3 cell stencil, and does not grow in
space. Applying the Superbee limiter to FV cannot eliminate all artificial dissipation for
this case, as is possible with FS. The FV results (not shown) corresponding to Fig. 7 spread
the discontinuity over four cells by the outflow boundary, with a continually broadening
trend.

However, while it is possible to use the Superbee limiter with F'S for this case, compressive
limiters can be unstable on different grid orientations. For example, no degree of compression
is stable for the case of Fig. 3. This potential for instability is related to global positivity,
as discussed by Sidilkover and Roe.?

The effect of using a general unstructured grid is investigated in Figs. 8 and 9. The
unstructured grid in this case was generated using VGRID.!®!® The FS solution exhibits
less dissipation, but is not as smooth as the FV solution. While the FS scheme preserves
contact discontinuities over larger spatial ranges than the FV scheme, FS does not appear
to degenerate gracefully with regard to extreme coarsening of the unstructured mesh for
this test case. This behavior could have negative implications for applications employing
multigrid convergence acceleration.



Circular Advection

Circular advection is achieved by setting X = (y, —z). A decaying sine-wave input profile
is used,

u(z,0) = (e® sinmr)?

Results for the two schemes, using the Minmod limiter, are presented on the worse-case
cut-cartesian mesh in Figs. 10 and 11. Again, the FS results are considerably less diffusive
than the FV solution.

The circular-advection problem is also applied on an unstructured mesh. The input
profile for this case consists of both a top-hat function and a decaying sine wave, allowing
comparisons between the schemes for both sharp discontinuities and smooth gradients. The
input profile is,

(e2*sin(2rz))® —05<z <0

0 —06<2<-0.5
u(z,0) =

0.4 —08<z<-0.6

0 —1<zr<-0.8

Results for this case are displayed in Fig. 12 for F'S and Fig. 13 for FV, both using the
Minmod limiter. FS performs significantly better at preserving the top-hat distribution.
FS also does a better job of maintaining the minimum and maximum values of the sine
distribution, though both schemes do well on the smooth gradient portion of the sine wave.

Non-linear Advection

The non-linear advection equation is obtained from Eqn. 1 by setting F = (“2—2, u) with
v = 0. In non-conservative form the equation is written,

Up + Uy + Uy = 0
A coalescing shock problem is considered, with an anti-symmetric input profile,

U(—l,y) = u(an) =0

u(z,0) = =2z — 1 on z = (—1,0)

The exact solution to this problem contains symmetric expansion fans on the sides and a
compression fan at the inflow that coalesces into a vertical shock at (z,y) = (—3, 3).

The first mesh is cut-cartesian containing 26 x 26 nodes. The FS and FV solutions,
both using the Minmod limiter, are presented in Figs. 14 and 15. Both algorithms exhibit
the same grid dependence on the amount of artificial dissipation as seen before, with the
left-half solutions having more diffusion than the right halves, due to the grid orientation.
Both methods perform the same in the compression-fan region, coalescing into a shock to
within the accuracy of the input-profile discretization.

The shock is more sharply defined by FS than by FV. Figure 14 has the correct shock

speed, with nearly the entire gradient captured in one cell thickness. In contrast, Fig. 15
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shows a slightly incorrect shock speed when using FV, as the shock progresses to the left
beyond the coalescence point, even though the discretization is conservative. The incorrect
shock speed results from a non-symmetric distribution of the dependent variable to the left
and right of the shock, caused by the excessive artificial diffusion generated on the grid-
misaligned (left-hand) side.

Contours of the absolute value of the error are presented in Figs. 16 and 17. Errors from
both computed solutions show a lack of symmetry, again reflecting the grid dependence of
the artificial diffusion terms. The error levels from FS are less than from FV. The shock
curvature in the FV solution at the coalescing point is clearly visible in Fig. 17, resulting in
significant downstream errors in the shock location as compared with the FS errors.

This problem is repeated on a 25 x 25 mesh with symmetric diagonal cuts, favorably
aligned with the advection directions. The FS and FV solutions, Figs. 18 and 19, are in
good agreement.  Plots of the absolute error contours, Figs. 20 and 21, show FS to be a
little more accurate than F'V for this case.

The final mesh for this case is a truly unstructured triangulation containing 847 nodes
and 1617 cells. The nodes are clustered to the outflow boundary, with a bias towards the
left-hand side. The FS solution is presented in Fig. 22, showing very accurate and crisp
shock resolution and good symmetry in the solution contours despite the mesh-clustering
bias. In contrast, the F'V solution in Fig. 23 has a more-diffuse shock and again an incorrect
shock speed, with the outflow shock offset to the left of x = —%. The FV solution is also
somewhat less symmetric than the F'S solution.

Linear Diffusion

Choosing F = 0, the heat-conduction equation is obtained from Eqn. 1,
ug =V - (vVu)

The test problem, a steady-state boundary value problem on a unit square, is taken from
Tomaich.* The Dirichlet boundary values are,

u(—1,y) =0, u(0,y)=sin(7y)

u(z,0) =0, wu(z,1)=—sin(mz)
The analytical solution on x = [—1,0], y = [0, 1] is,
1

sinh 7

u(z,y) = [sinh(m(z+1))sin(ry) + sinh(7y)sin(r(z+1))]

Both diffusion discretizations, Eqns. 10 and 29, are compared on a 438-node unstructured
mesh. Figures 24 and 25 plot the absolute value of the error in the converged solutions
using Eqns. 10 and 29, respectively. A carpet plot of the solution, using the finite element
formulation, is presented in Fig. 26.

The finite element treatment is clearly more accurate, and is used to discretize the dif-
fusion terms for both FV and FS in the following section. The average-gradient results in
Fig. 24 appear to exhibit a decoupling mode, similar to odd/even decoupling for structured
meshes.
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Linear Advection-Diffusion

The final test case is a linear advection-diffusion problem of Smith and Hutton.?® The
flux function is F' = Au, with,

X=(29(1 —a), —22(1 — 7))

The streamlines for this problem, while not truly circular, are similar in orientation to the
circular advection problem. The inflow profile is,

u(z,0) = 1+ tanh(20z + 10)

The diffusion coefficient is chosen to be a constant, ¥ = 1072. The domain is the unit square
in the second quadrant. No closed-form solution is known to the authors for this problem.

A sequence of five unstructured meshes is considered. The meshes have no preferred
clustering or stretching and have nominal node-spacings of 0.1, 0.05, 0.025, 0.0125, and
0.00625, labeled as Meshes A-E, respectively. The number of nodes for each mesh, along
with the solution times for both FS and FV on a 195 MHz SGI R10000 CPU are listed in
Table 1.

Ly-norms of the artificial and physical viscosities computed using both FS and FV are
presented for each mesh in Table 2.  Notice that the norm of the artificial dissipation
for both FV and F'S drops lower than the norm of the physical dissipation on Meshes D
and E. Since the algorithms select only the larger of the physical or artificial dissipation
(Eqn. 30), Table 2 suggests both schemes are grid resolved on Mesh D. However, the norm
of the physical dissipation is smaller for FV than FS on each mesh A-D. The physical
viscosity is driven by the solution curvature, suggesting F'S maintains the solution profile
sharper than FV on the coarser meshes. A comparison of outflow profiles will soon verify
this interpretation.

Further evidence of a grid-resolved FS solution is seen in Figs. 27 and 28. The FS
solution on Mesh E at the outflow boundary is presented along with the inflow profile and
the corresponding pure-advection (v =0) FS solution in Fig. 27.  The pure-advection
solution is seen to replicate the inflow profile, with a clear separation from the diffused,
v = 1073, solution. Plotting only the FS results with respect to grid refinement, Fig. 28
shows a convergence of the outflow profile by Mesh C for FS.

The accuracy of F'S and FV are compared in Fig. 29, where the outflow solutions from FS
and FV are plotted for Meshes C and E. Taking the grid-converged FS Mesh-E solution to
be the “truth” solution, it is clear that F'S reaches the grid converged solution on a coarser
mesh than FV.

Computational efficiencies of the two algorithms are compared in Fig. 30, where the Lo-
norm of the residual is plotted versus CPU time for the fine-mesh FS and F'V solutions, along
with the F'S convergence history on Mesh D. The Mesh-E FS solution converges in 760 sec.
The corresponding FV solution takes 2.5 times longer than FS, due, in part, to the need
to reconstruct gradient information at each node with FV for second-order spatial accuracy.
However, considering the solution time to reach a given accuracy, it is more reasonable to
compare the FS solution time on Mesh D to the finest-mesh FV solution. The FS Mesh-D
solution took only 64 sec, a factor of 29 times less than F'V on Mesh E, and still shows better
accuracy than the fine-mesh FV solution.
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An even greater speedup is seen with FS in conjunction with the van Albada limiter,
where now the Mesh-B solution over-plots the curve from the finest grid, shown in Fig. 31.
The corresponding FV result using the van Albada limiter on Mesh B is included, and
clearly falls short of the F'S accuracy. The FV case was repeated with the highly-compressive
Superbee limiter with little improvement in accuracy. The solution time for FS on Mesh B
is about one second, yielding a speedup factor of 2-3 orders of magnitude over FV.

The final set of results addresses convergence issues while pushing the positivity limits.
Figure 32 compares two convergence histories for the second-order FS on Mesh B.  The
non-converging, though stable, convergence history is the result of using strict positivity ar-
guments to set the timestep (Eqn. 38). The resulting solution is bounded and approximately
correct but oscillatory. Limiter “ringing” is considered to be a contributor to this behavior,
and the higher-order discretization for the implicit matrix could be reducing the diagonal
dominance, and hence stability, of the Gauss-Siedel iteration.

Full convergence is achieved by using first-order positivity coefficients, which are not
dependent on the limiters. The resulting local timesteps will not be as large as true second-
order positivity would allow, but appear to be more robust.

Summary of Results

Fluctuation splitting and finite volume schemes are compared in detail as applied to scalar
advection, diffusion, and advection-diffusion problems. The fluctuation splitting scheme is
seen to introduce less artificial dissipation while treating advection terms, allowing for more
accurate resolution of weakly dissipative advection-diffusion problems. The ability to resolve
solutions to these problems on coarser meshes makes the fluctuation splitting scheme the
preferred choice over finite volume.

Linear advection test problems are utilized to investigate the dependence of artificial
diffusion production on grid orientation. Both fluctuation splitting and finite volume are
shown to exhibit grid dependencies, but with fluctuation splitting producing less artificial
dissipation on all grids considered.

A non-linear coalescing shock problem further explores grid dependencies as cases are
constructed that result in incorrect shock speeds for finite volume. Fluctuation splitting
shows correct shock speeds for all grids and provides tighter shock capturing than finite
volume.

An advection-diffusion problem with small physical dissipation (diffusion coefficient of
1073) is considered where the reduction in artificial dissipation with fluctuation splitting
results in a significant accuracy improvement over finite volume. Convergence times are
compared, showing a speedup of 2.5 for fluctuation splitting over finite volume on identical
grids, using a point Gauss-Seidel relaxation. However, a grid convergence study shows
fluctuation splitting has better resolution of the solution on a coarser mesh than finite volume
does on finer meshes, resulting is a speedup of 29 for fluctuation splitting over finite volume.

Based upon these significantly reduced solution times for solving model problems, as com-
pared to the current state-of-the-art finite volume method, fluctuation splitting is considered
a worthwhile scheme to pursue for modeling fluid dynamic problems.
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Table 1 Grids and solution times for advection-diffusion problem.
CPU seconds
Mesh Nodes FS FV

A 134 <1 <1
B 495 1 1
C 1,928 5 8
D 7529 64 145
E 28915 760 1880
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Table 2 Ly-norms (x10°) of artificial and physical viscosities for advection-diffusion
problem.

FS FV
18l lIdoll Mesh [[2lla  [lull
(art.) (phys.) (art.) (phys.)
1274 215 A 1918 190
897 265 B 640 176
192 161 C 144 119
o4 76 D 46 66
13 36 E 18 36
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Figure 1 Fluctuation splitting element nomenclature.
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Figure 2 First-order fluctuation splitting, uniform advection.
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Figure 3 Second-order fluctuation splitting, uniform advection.
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Figure 4 Second-order finite volume, uniform advection.
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Figure 5 Second-order fluctuation splitting, uniform advection.
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Figure 6 Second-order finite volume, uniform advection.

23



Figure 7 Second-order fluctuation splitting with compressive limiter.
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Figure 8 Fluctuation splitting on unstructured mesh.
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Figure 9 Finite volume on unstructured mesh.
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Figure 10 Fluctuation splitting, circular advection.
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Figure 11 Finite volume, circular advection.
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Figure 12 Fluctuation splitting on unstructured mesh, circular advection.
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Figure 13 Finite volume on unstructured mesh, circular advection.
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Figure 14 Fluctuation splitting, Burgers equation.
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Figure 16 Fluctuation splitting, Burgers equation, absolute error.
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Figure 17 Finite volume, Burgers equation, absolute error.
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Figure 20 Fluctuation splitting, Burgers equation, absolute error.
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Figure 21 Finite volume, Burgers equation, absolute error.
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Figure 22 Fluctuation splitting, Burgers equation, unstructured mesh.
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diffusion terms from Eqn. 10.

Figure 24 Pure-diffusion problem error,
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Figure 25 Pure-diffusion problem error, diffusion terms from Eqn. 29.
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Figure 26 Heat equation solution using finite element formulation. Contour increment
is 0.1.

43



I
wn

o
N
o

(o=}

Figure 27 Fluctuation splitting profiles on finest mesh, advection-diffusion problem.
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Figure 28 Fluctuation splitting grid convergence, advection-diffusion problem.
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Figure 29 Fluctuation splitting and finite volume for advection-diffusion problem.
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Figure 30 Convergence histories for advection-diffusion problem.
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Figure 31 Advection-diffusion results using van Albada limiter.

L L O e 1

— FS, minmod, mesh E

— FS, van Albada, mesh B
FV, van Albada, mesh B

T
a1

48



10°

g Second-order positivity
coefficients
10"
IResl, [
107 |-
10° E
L First-order positivity
10* coefficients
10° |
-6 T |
107 25 50 75 100
Iteration

Figure 32 Convergence rates using first- and second-order positivity coefficients.
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